Anomaly Detection as a foundation of Autonomous Monitoring

We believe the future of monitoring, especially for platforms like Kubernetes, is truly autonomous. Cloud native applications are increasingly distributed, evolving faster and failing in new ways, making it harder to monitor, troubleshoot and resolve incidents. Traditional approaches such as dashboards, carefully tuned alert rules and searches through logs are reactive and time intensive, hurting productivity, the user experience and MTTR. 

We believe the future of monitoring, especially for platforms like Kubernetes, is truly autonomous. Cloud native applications are increasingly distributed, evolving faster and failing in new ways, making it harder to monitor, troubleshoot and resolve incidents. Traditional approaches such as dashboards, carefully tuned alert rules and searches through logs are reactive and time intensive, hurting productivity, the user experience and MTTR. We believe machine learning can do much better – detecting anomalous patterns automatically, creating highly diagnostic incident alerts and shortening time to resolution.

Read More

The Future of Monitoring is Autonomous

Monitoring today is extremely human driven. The only thing we’ve automated with monitoring to date is the ability to watch for metrics and events that send us alerts when something goes wrong. Everything else: deploying collectors, building parsing rules, configuring dashboards and alerts, and troubleshooting and resolving incidents, requires a lot of manual effort from expert operators that intuitively know and understand the system being monitored.

TL;DR

Monitoring today puts far too much burden on DevOps - requiring too much time and skill to build and maintain complex dashboards and fragile alert rules. Fortunately unassisted machine learning can be used to autonomously detect and find the root cause of critical incidents. Please read about it below, or try our free Autonomous Monitoring Platform now and start auto-detecting incidents in less than 5 minutes.

 

The Longer Version

 

Monitoring today is extremely human driven. The only thing we’ve automated with monitoring to date is the ability to watch for metrics and events that send us alerts when something goes wrong. Everything else: deploying collectors, building parsing rules, configuring dashboards and alerts, and troubleshooting and resolving incidents, requires a lot of manual effort from expert operators that intuitively know and understand the system being monitored.

Read More

How Fluentd collects Kubernetes metadata

As part of my job, I recently had to modify Fluentd to be able to stream logs to our (Zebrium) Autonomous Log Monitoring platform. In order to do this, I needed to first understand how Fluentd collected Kubernetes metadata. I thought that what I learned might be useful/interesting to others and so decided to write this blog.

As part of my job, I recently had to modify Fluentd to be able to stream logs to our (Zebrium) Autonomous Log Monitoring platform. In order to do this, I needed to first understand how Fluentd collected Kubernetes metadata. I thought that what I learned might be useful/interesting to others and so decided to write this blog.

Read More

Do your logs feel like a magic 8 ball?

Logs are the source of truth when trying to uncover latent problems in a software system. But is searching logs to find the root cause the right approach?

Logs are the source of truth when trying to uncover latent problems in a software system. They are usually too messy and voluminous to analyze proactively, so they are used mostly for reactive troubleshooting once a problem is known to have occurred.

Read More

Featured Posts

AUTONOMOUS INCIDENT
DETECTION
 
TRY IT NOW!
 
FREE SIGN-UP